Hierarchical fuzzy controller applied to multi-input power system stabilizer

نویسندگان

  • Ebrahim Rasooli ANARMARZI
  • Mohammad Reza FEYZI
  • Mehrdad Tarafdar HAGH
چکیده

This paper proposes the application of a hierarchical fuzzy system (HFS) based on multi-input power system stabilizer (MPSS) in multi-machine environment. The number of rules increases exponentially with the number of variables in a standard fuzzy system. This problem is solved in the proposed HFS method. In this method, the total number of rules increases only linearly with the number of input variables. HFS consists of a number of low-dimensional fuzzy systems in a hierarchical form. In the MPSS, the deviation of reactive power ΔQ is added to a ΔP +Δ ω input type Power System Stabilizer (PSS) to have better performance. The performances of MPSS and the proposed method in damping inter-area mode of oscillation are observed in response to disturbances. It is found that the proposed PSS is performing satisfactorily within the whole range of disturbances. This comparative study is demonstrated through digital simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

Power System Damping Using Hierarchical Fuzzy Multi- Input Power System Stabilizer and Static VAR Compensator

This paper proposes the application of a hierarchical fuzzy system (HFS) based on multi-input power system stabilizer (MPSS) and also Static Var Compensator (SVC) in multi-machine environment.The number of rules grows exponentially with the number of variables in a conventional fuzzy logic system. The proposed HFS method is developed to solve this problem. To reduce the number of rules the HFS ...

متن کامل

Voltage-Base Control of Camera Stabilizer Using Optimal Adaptive Fuzzy Sliding Mode Control

The camera stabilizer stabilizes the camera’s line of sight by isolating the camera from the model uncertainties, disturbances of operating environment and system movements. This paper presents a voltage-base optimal adaptive fuzzy sliding mode control for camera stabilizer. In this proposed control method, a voltage-base sliding mode controller is applied. But unfortunately, undesirable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010